DPP - Daily Practice Problems

Name :	Date :
Start Time :	End Time :
CHEMI	STRY (60)
SYLLABUS: Analytical Chemistry: Preliminary Tests, Wettests for	or acid radicals, Wet tests for basic radicals, Volumetric Analysis.

Max. Marks: 120

Time : 60 min.

🕀 www.studentbro.in

GENERAL INSTRUCTIONS

- The Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.
- You have to evaluate your Response Grids yourself with the help of solution booklet.
- Each correct answer will get you 4 marks and 1 mark shall be deduced for each incorrect answer. No mark will be given/ deducted if no bubble is filled. Keep a timer in front of you and stop immediately at the end of 60 min.
- The sheet follows a particular syllabus. Do not attempt the sheet before you have completed your preparation for that syllabus. Refer syllabus sheet in the starting of the book for the syllabus of all the DPP sheets.
- After completing the sheet check your answers with the solution booklet and complete the Result Grid. Finally spend time to analyse your performance and revise the areas which emerge out as weak in your evaluation.

DIRECTIONS (Q.1-Q.21) : There are 21 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct.

Q.1	Wh	ich gives violet coloured	bcad in	borax bead test?
	(a)	Fe ²⁺		Ni ²⁺
	(c)	Co ²⁺	(d)	Mn^{2+}
Q.2	Wh	ich one of the following s	alt gives	green coloured flame
	who	en the salt is tested by Pt	wirc?	
	(a)	Bar ium salt	(b)	Calcium salt
	(c)	Borate	(d)	Lead salt

- Q.3 Sodium sulphite on heating with dilute HC1 liberates a gas which
 - (a) Turns lead acctate paper black
 - (b) Turns acidified potassium dichromate paper green

- (c) Burns with a blue flame
- (d) Smells like vinegar
- Q.4 MnO_2 and H_2SO_4 added to NaCl, the greenish yellow gas liberated will be
 - (a) Cl₂ (b) NH₃
 - (c) N_2 (d) H_2
- Q.5 For precipitating out group II cations, H₂S gas is passed through O.S. acidified with HCl, group II cations are completely removed before proceeding to analysis of group III cations. However sometimes a yellow precipitate is persistently formed even after repeatedly passing H₂S gas. This is due to
 - (a) CdS (b) As_2S_3 (c) AsO_4^{3-} (d) S

 Response Grid
 1. abcd
 2. abcd
 3. abcd
 4. abcd
 5. abcd

Space for Rough Work

CLICK HERE

Get More Learning Materials Here : 📕

DPP/C (60)

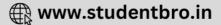
(b) Al^{3+} , Hg^{2+}

(d) Ni^{2+}, Cu^{2+}

Q.14 Which one among the following pairs of ions cannot be 0.6 When a mixture of solid NaCl, solid $K_2Cr_2O_7$ is heated with conc. H₂SO₄, orange red vapours are obtained of separated by H₂S in dilute hydrochloric acid? which of the compound ? (a) Bi^{3+}, Sn^{4+} (a) Chromous chloride (b) Chromyl chloride (c) Zn^{2+} , Cu^{2+} (c) Chromic chloride (d) Chromic sulphate Q.15 Which of the following changes the colour of the aqueous Q.7 A salt gives violet vapours when treated with conc. H₂SO₄, solution of FcCl₃? it contains. (a) $K_4[Fe(CN)_6]$ (a) Cl⁻ (b) I-(c) NH_4CNS (c) Br~ (d) NO_3^{-1} Which compound is soluble in NH₄OH? Q.8 (a) PbCl₂ (b) PbSO4 (a) Impurities in BaCl, (c) AgCl (d) CaCO₃ 0.9 Aqueous solution of a salt when treated with AgNO₂ solution gives a white precipitate which dissolves in NH₄OH. Radical present in the salt is (a) CrO_4^{2-} (a) Cl⁻ (b) Br (c) MnO_4^- (c) I-(d) NO_3^{-1} Q.10 In the test of sulphate radical, the white precipitate of sulphate is soluble in (a) Conc. HCl (b) Conc. H_2SO_4 (a) Red colouration (d) Nonc of these (c) Conc. HNO₃ (b) Blue colouration Q.11 Na₂CO₃ cannot be used to identify (c) Violet colouration (b) SO_3^{2-} (a) $C \bullet_{3}^{2}$ (d) Brown colouration Q.19 (d) SO_4^{2-} (c) S^{2-} Q.12 Gas A is bubbled through slaked lime when a white precipitate is formed. On prolonged bubbling, the precipitate is dissolved. On heating the resultant solution, of KOH required for completing the titration is the white precipitate reappears with the evolution of gas (a) 16ml B. The gases A and B respectively are (c) 35ml (a) CO₂ and CO (b) CO and CO_2 (c) COandCO (d) CO₂and CO₂ Q.13 Reagent used in the qualitative analysis of IVth group is (a) l (a) HCl (b) H₂S(alkaline) (c) 3 (d) Nonc of these (c) $(NH_4)_2S$

(b) H_2S (d) All of these Q.16 When HCl gas is passed through saturated solution of BaCl₂, a white ppt is obtained. This is due to (b) Impurities in HCl (c) Precipitation of BaCl₂ (d) Formation of complex Q.17 Nessler's reagent is used to detect (b) $P \bullet_{4}^{3-}$ (d) NH⁺ 0.18 Sodium nitroprusside when added to an alkaline solution of sulphide ions produces a A 100 ml solution of 0.1 N-HCl was titrated with 0.2 N-NaOH solution. The titrat ion was discontinued after adding 30 ml of NaOH solution. The remaining titration was completed by adding 0.25 N-KOH solution. The volume

- (b) 32ml
- (d) 70ml
- Q.20 0.45 g of an acid (mol wt. = 90) required 20 ml of 0.5 NKOH for complete neutralization. Basicity of acid is
 - (b) 2 (d) 4


	240				
	6. abcd	7. abcd	8. abcd	9. abcd	10. abcd
RESPONSE	11.abcd	12. abcd	13.abcd	14.abcd	15. abcd
Grid	16.abcd	17.abcd	18.abcd	19. abcd	20. abcd
-					

Space for Rough Work _

Get More Learning Materials Here :

238

DPP/ C (60)

- Q.21 20 ml of a solution of a weak monobasic acid neutralizes 22.18 ml of a solution of NaOH and 20 ml of N/10 HCl neutralizes 21.5 ml of the same NaOH solution. The normality for the acid is nearly
 - (a) 10 N (b) 1 N
 - (c) 0.10 N (d) 100 N

DIRECTIONS (Q.22-Q.24) : In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes :

- (a) 1, 2 and 3 are correct (b) 1 and 2 are correct
- (c) 2 and 4 are correct (d) 1 and 3 are correct
- Q.22 Which of the following statement (s) is (are) correct when a mixture of NaCl and K₂Cr₂O₇ is gently warmed with cone. H₂SO₄?
 - (1) An orange red vapour is evolved
 - (2) The vapour when passed into NaOH solution gives a yellow solution of Na_2CrO_4
 - (3) Chromyl chloride is formed
 - (4) Chlorinc gas is evolved
- Q.23 The reagents, NH₄Cl and aqueous NH₃ will precipitate
 - (1) Ca^{2+} (2) Al^{3+}
 - (3) Bi^{3+} (4) Mg^{2+}

Q.24 Which of the folowing substances are soluble in concentrated HNO₃?

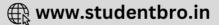
239

(3) PbS (4) BaSC		HgS		CuS
	(3)	PbS	(4)	BaSO ₄

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows :

p-Amino-*N*, *N*-dimethylaniline is added to a strongly acidic solution of **X**. The resulting solution is treated with a few drops of aqueous solution of **Y** to yield blue coloration due to the formation of methylene blue. Treatment of the aqueous solution of **Y** with the reagent potassium hexacyanoferrate(II) leads to the formation of an intense blue precipitate. The precipitate dissolves on excess addition of the reagent. Similarly, treatment of the solution of **Y** with the solution of potassium hexacyanoferrate (III) leads to a brown coloration due to the formation of **Z**.

Q.25 The compound X is


(a)	NaNO ₃	(b)	NaCl
(c)	Na ₂ SO ₄	(d)	Na ₂ S
Q.26 The	compound Y is		
(a)	MgCl ₂	(b)	FeCl ₂
(c)	FeCl ₃	(d)	ZnCl ₂
Q.27Thc	compound Z is		
(a)	Mg ₂ [Fe(CN) ₆]	(b)	$Fe[Fe(CN)_6]$
(c)	$Fe_4[Fe(CN)_6]_3$	(d)	$K_2 Zn_3 Fe(CN)_6 _2$

Response	21.@b©d	22. abcd	23. abcd	24. abcd	25. abcd
GRID	26.abcd	27. abcd			

- Space for Rough Work

Get More Learning Materials Here : 📕

240

DIRECTIONS (Q. 28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.

Q.28 Statement 1 : Sb (III) is not precipitated as sulphide when in its alkaline solution H_2S is passed. Statement 2 : In basic medium, concentration of S^{2-} ions

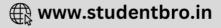
is not enough for precipitation

Q.29 Statement 1: Acidified K₂Cr₂O₇ is turned green when SO₂ is passed through it.

Statement 2 : In this reaction SO₂ acts as a reducing agent.

Q.30 Statement 1: A solution of BiCl₃ in conc. HCl when diluted with water gives white ppt.

Statement 2 : BiCl₃ in insoluble in dil. HCl


 RESPONSE GRID
 28.abcd
 29.abcd
 30.abcd

DAILY PRACTICE PROBLEM SHEET 60 - CHEMISTRY					
Total Questions30Total Marks120					
Attempted Correct					
Incorrect Net Score					
Cut-off Score 36 Qualifying Score 56					
Success Gap = Net Score – Qualifying Score					
Net Score = (Correct × 4) – (Incorrect × 1)					

Space for Rough Work

Get More Learning Materials Here : **_**

• DPP/ C (60)

DPP/C (60)-

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

(60)

115

- (d) As Mn²⁺ has all its electrons (5) unpaired in its *d*-orbital, so it has extra stable configuration and requires high excitation energy and gives violet colour.
- (a) Barium salt gives green coloured flame as it has low ionization energy.
- 3. (b) $Na_2S+dil_2HCl \rightarrow 2NaCl + H_2S$ $H_2S+H_2SO_4+K_2Cr_2O_7 \xrightarrow{acidic} K_2SO_4 + Cr_2(SO_4)_3 + S$ (green)
- 4. (a) Yellowish-green gas chlorine with suffocating odour is evolved when sodium chloride mixed with manganese dioxide is heated with concentrated H₂SO₄. NaCl + H₂SO₄ → NaHSO₄ + HCl Mn●₂ + 4 HCl → MnCl₂ + 2H₂O + Cl₂↑
- 5. (c) This is due to presence of AsO_4^{3-} .
- 6. (b) $NaCl + H_2SO_4 \rightarrow NaHS \oplus_4 + HCl$

$$K_2Cr_2O_7 + 2H_2SO_4 \rightarrow 2KHSO_4 + 2Cr \bullet_3 + H_2O$$

CrO₃ + 2HCI- \rightarrow CrO₂Cl₂ + H₂O
(Orange red vapour)

(b) Iodine vapours are violet the salt must contain I⁻.
 KI+H₂S●₄ → KHS●₄ +HI

$$2HI + H_2SO_4 \rightarrow I_2 \uparrow + 2H_2O + SO_2$$

violet vapour

- 8. (c) AgCl forms complex with NH_4OH
- 9. (a) When Cl^- , Br^- and F^- are treated with AgNO₃ solution in presence of dilute HNO₃, corresponding silver halide is obtained which is soluble in NH₄OH, NaCN, and Na₂S₂O₃.

$$AgNO_{3} + NaCl \longrightarrow AgCl \downarrow + NaNO_{3}$$
white
$$AgCl + dil.2NH_{4}OH \longrightarrow [Ag(NH_{3})_{2}]Cl + 2H_{2}O$$
complex

- (d) As the sulphate radical is a strong oxidising agent, it is insoluble in acids and so detection of sulphate radical requires no other reagent.
- 11. (a) SO_3^2 , S^{2-} and SO_4^{2-} salts form comparatively stronger acids (than H₂CO₃) in solution, hence evolve CO₂ with

 Na_2CO_3 solution and give effervescence, while CO_3^{2-} does not react with Na_2CO_3 solution.

12. (d) According to the equation,

 $Ca(OH)_2 + C \oplus_2 \xrightarrow{\Delta} CaC \oplus_3 + H_2 \oplus$

 $CaCO_3 + H_2O + CO_2 \xrightarrow{\Delta} Ca(HCO_3)_2$

 $Ca(HC \bullet_3)_2 \xrightarrow{\Delta} CaO + H_2 \bullet + 2CO_2$ Hence, the gasses A and B are CO_2 and CO_2 respectively 13. (b) In presence of NH₄OH₂ dissociation of H₂S is remarkablyhigh H₂S \Longrightarrow 2H⁺+S²⁻

 $NH_4OH \rightarrow NH_4^+ + OH^-$

 $OH^- + H^+ \rightarrow H_2O$

14. (a) Both will precipitate as sulphide.

15. (d)
$$\operatorname{FeCl}_3 + \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \rightarrow \operatorname{Fe}_4[\operatorname{Fe}(\operatorname{CN})_6]_3$$

Ferri ferrocyanide (Blue)

 $2FeCl_3 + 3H_2S \rightarrow Fe_2S_3 + 6HCl$

$$3NH_4CNS + FeCl_3 \rightarrow Fe(CNS)_3 + 3NH_4Cl$$

(Bloed red)

- (c) White precipitate obtained is of BaCl₂, as the Cl⁻ ions concentration increases due to the addition of HCl, the ionic product becomes more than solubility product and thus, BaCl₂ is precipitated.
- 17. (d) Nessler's reagent gives red precipitate with NH_4^+ .

 $NH_4Cl + 2K_2[Hgl_4] + 4KOH \rightarrow$

 $NH_2 - Hg - O - Hg - I + 7KI + KCI + 3H_2O$ lodide of Million's base (Brown ppt)

18. (c) $Na_2S+Na_2[Fe(NO)(CN)_5] \rightarrow sodium nitroprusside$

Na₄[Fe(CN)₅NOS] purple colour complex

19. (a) In the neutralization of acid and base N × V of both must be equivalent N × V of HCl=0.1 × 100=10 N × V of Na OH = 0.2 × 30 = 6 as to obtain 10 N × V of base 4 N × V of base is required N × V of KOH = 0.25 × 16=4 N₁V₁ = N × V + N × V NaOH KOH 0.1 × 100 = 0.2 × 30 + 0.25 × V 10 = 6 + 0.25 V V = $\frac{400}{25}$ ⇒ V = 16 ml 20. (b) Normalit y=N= $\frac{W_A \times 1000}{Eq.wt \times V}$ \therefore Eq. Wt = $\frac{0.45 \times 1000}{0.5 \times 20}$ = 45 \therefore Basicity = $\frac{Mol.Wt}{Eq.Wt} = \frac{90}{45} = 2$

Get More Learning Materials Here :

CLICK HERE

DPP/C [60]

116

21. (c) $N_1V_1 = N_2 \times V_2$

$$N_1 \times 20 = N_2 \times 22.28$$

 $N_{\rm I} = \frac{N_2 \times 22.18}{20}$

NaOH solution = HCl solution

$$N_2 \times 21.5 = \frac{1}{10} \times 20$$

 $N_2 = \frac{20}{10 \times 21.5}$... (ii)
by eq. (i) and (ii)

$$N_1 = \frac{20 \times 22.18}{20 \times 10 \times 21.5} = \frac{22.18}{215} = 0.1 N$$

22. (a) Chromyl chloride test

$$4$$
NaCl+K₂Cr₂O₇+3H₂SO₄ — heat

 $K_2SO_4 + 2Na_2SO_4 + 2CrO_2Cl_2 + 3H_2O$ chronyl chloride (orange red)

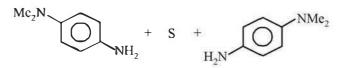
 $4NaOH + CrO_2Cl_2 \rightarrow 2NaCl + Na_2CrO_4 + 2H_2O$ Sod.chrom.tc(ycllow) $Na_2CrO_4 + (CH_3COO)_2Pb \rightarrow$

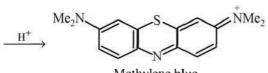
 $2CH_3COONa + PbCrO_4 \downarrow$ Leadchromate

...(i)

- (yellowppt.)
- 23. (b) Al^{3+} (third group radical) and Ca^{2+} (fifth group radical) precipitate out as their hydroxides with NH₄Cl and aq. NH₃ (NH₄OH) which are the group reagents.
- 24. (a) HgS, CuS and PbS are soluble in conc. HNO₃. For25-27

Reaction of Y indicates that it is Fc^{3+} salt.


$$\begin{array}{ccc} 4\mathrm{Fe}^{3+} + & 3[\mathrm{Fe}(\mathrm{CN})_6]^{4-} &\longrightarrow & \mathrm{Fe}_4[\mathrm{Fe}(\mathrm{CN})_6]_3 \downarrow \\ & & & & \\ &$$


$$\begin{array}{ccc} \operatorname{Fe}^{3+} + & [\operatorname{Fe}(\operatorname{CN})_6]^{3-} & \longrightarrow \operatorname{Fe}[\operatorname{Fe}(\operatorname{CN})_6] \\ & & & \\ \operatorname{Y} & & & \\ \operatorname{hexacyanoferrate} & (\operatorname{III}) & & \\ \operatorname{Brown \ colour} & & \\ \end{array}$$

Since the product formed (methylene blue) has sulphur in its structure, it should be supplied by the compound X which is thus Na_2S .

$$Na_2S+2H^+ \longrightarrow H_2S+2Na^+$$

 $FeCl_3 + H_2S \longrightarrow FeCl_2 + 2HCl + S$

Methylene blue

25. (d)

26. (c)

- 27. **(b)**
- 28. (d) Statement 1 is true but statement 2 is false
 Sb(III) is a basic radical of IIB group of which group regert is H₂S is presence of dilute HC1. It is necessary to maintain the proper hydrogen ion concentration for the precipitation of IV group cations.
- **29.** (a) Both statement 1 and statement 2 are correct and statement 2 is the correct explanation of statement 1.

 $K_{2}Cr_{2}O_{7} + 3SO_{2} + H_{2}SO_{4} \longrightarrow$ $K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 3H_{2}O$ green colour

30. (d) It is due to the formation of insoluble BiOCl on hydrolysis.

$$BiCl_3 + H_2O \rightarrow \frac{BiOCl}{White ppt} + 2HCl$$

Get More Learning Materials Here :